A Compartmental Model of a Spiking and Adapting Olfactory Receptor Neuron for Use in Large-Scale Neuronal Network Models of the Olfactory System
نویسنده
چکیده
In the aim of obtaining complete models of the biological olfactory system it is necessary to develop models of each one of its parts: the olfactory epithelium (with olfactory receptor neurons), the olfactory bulb and the olfactory cortex. This thesis deals with the development of a model of the olfactory epithelium suitable for network simulations; in the form of a set of olfactory receptor neurons (ORNs) expressing different kind and amount of olfactory receptors. The developed ORN model is a single cell model at a very low level of abstraction, including Hodgkin-Huxley type ion channels. Taking experimental data as a reference, in this model I try to represent a good compromise between simplicity and biological plausibility. En spikande och adapterande kompartmentmodell av en luktreceptorcell för användning i storskaliga neuronala nätverksmodeller av luktsystemet Sammanfattning För att få en komplett modell av det biologiska luktsystemet är det nödvändigt att utveckla modeller för alla dess delar: luktepitelet (med luktreceptorceller), luktbulben och luktbarken. Denna avhandling handlar om utvecklandet av en modell av luktepitelet, lämpad för nätverkssimuleringar, i form av en grupp av luktreceptorceller (ORN) med olika sorters och mängder av luktreceptorer. Den utvecklade ORN-modellen är en encellsmodell med en låg abstraktionsnivå, med jonkanaler av Hodgkin-Huxley-typ. Genom att ta experimentella data som referens försöker jag i modellen representera en väl avvägd kompromiss mellan enkelhet och biologisk trovärdighet. A compartmental model of an olfactory receptor neuron Un modelo compartimental de una neurona receptora del olfato para su uso en modelos de grandes redes neuronales del sistema olfativo Resumen Para obtener modelos completos del sistema olfatorio es necesario desarrollar modelos de cada una de sus partes: el epitelio olfatorio (con neuronas receptoras del olfato), el bulbo olfatorio y el córtex olfatorio. Esta tesis trata sobre el desarrollo de un modelo del epitelio olfativo adecuado para simulaciones en red; en forma de una población de neuronas receptoras del olfato (ORNs) que expresan diferentes tipos y cantidades de receptores del olfato. El modelo desarrollado es el de una célula a muy bajo nivel de abstracción, incluyendo canales iónicos de tipo Hodgkin-Huxley. Tomando datos experimentales como referencia, este modelo intenta representar un buen equilibrio entre simplicidad y plausibilidad biológica. Un model compartimental d’una neurona receptora de l’olfacte pel seu ús en models de grans xarxes neuronals del sistema olfactiu Resum Per tal d'obtenir models sencers del sistema olfactiu és necessari desenvolupar models de cadascuna de les seves parts: l'epiteli olfactiu (amb neurones receptores de l'olfacte), el bulb olfactiu i el còrtex olfactiu. Aquesta tesi tracta sobre el desenvolupament d'un model de l'epiteli olfactiu adequat per simulacions en xarxa; en forma d'una població de neurones receptores de l'olfacte (ORNs) que expressen diferents tipus i quantitats de receptors de l'olfacte. El model desenvolupat és el d'una cèl·lula a molt baix nivell d'abstracció, incloent canals iònics del tipus Hodgkin-Huxley. Prenent dades experimentals com a referència, aquest model intenta representar un bon balanç entre simplicitat i plausibilitat biològica. A compartmental model of an olfactory receptor neuron
منابع مشابه
Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملDifferent olfactory perception in heroin addicts: an fMRI study
Background: Addiction as a mental disorder has large adverse effects on brain health. It alters brain structure and deteriorates brain functionality. Impairment of brain cognition in drug addiction is illustrated in many previous works; however, olfactory perception in addiction and in particular the neuronal mechanisms of it are rarely studied. Methods: In this experiment, we recruited 20 he...
متن کاملLocust Olfaction Synchronous Oscillations in Excitatory and Inhibitory Groups of Spiking Neurons
During odour recognition, excitatory and inhibitory groups of neurons in the second stage of the locust olfactory system, the antennal lobe (AL), fire alternately. There is little spread in the firing times within each group. Locust anatomy and physiology help to pin down all parameters apart from the weights in a coarse spiking neuron model of the AL. The time period and phase of the group osc...
متن کاملA spiking neural network model of the locust antennal lobe : towards neuromorphic electronic noses inspired from insect olfaction
In analogy with the non-selectivity of gas sensors, an olfactory receptor neuron is not tuned to a specific odor and hence presents a lack of selectivity. Despite this shortcoming, insects have impressive abilities to recognize odors. Understanding how their olfactory system works could then be highly beneficial for designing efficient electronic noses. In particular, the antennal lobe, the fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010